Classifying Polynomials

A polynomial is an algebraic expression with one or more unlike terms linked together by + or -

<u>**Polynomials can be classified by the number of terms they have:</u> A *monomial* has *1 term*, a <u>binomial</u> has <u>2 terms</u>, and a **trinomial** has **three terms**.

**Polynomials can be classified by degree:

The **degree of a term** is the sum of the exponents on the variables in the term The **degree of the polynomial** is the degree of the highest-degree term

Polynomial	# of Terms	Degree of Each Term	Degree of the Polynomial
x + 3			
5x ² – 2x			
3y ³ + 0.2y - 1			
$7x^2y^4 + x^6y$			
0.7u – 2a²b			
abxy – 8ab² + xy			

Simplifying Polynomials

Polynomials can be SIMPLIFIED by using exponent laws and collecting like terms. Once a polynomial is simplified, nothing more can be done without more information about your variable.

Remember: both LIKE and UNLIKE terms can be multiplied and divided, but only LIKE terms can be added or subtracted.

Simplifying by adding and subtracting like terms:

- 1. Add/subtract the coefficient (number in front)
- 2. Keep the variable (letter) and exponent the same.

Simplify the following expressions:

3x + 4x

10y - 4y

When there are more than a couple of terms, first COLLECT the like terms together, then SIMPLIFY:

4x + 8 - 2x + 4

Collect like terms:

Simplify:

$$9 + 3x^2 + 4x + 2x^2 - 5 - 6x$$

Collect like terms:

Simplify:

$$6xy^2 + 5y - 6 + 3y^2x - 7y + 6$$

Collect like terms:

Simplify:

Practice: Simplifying

1. Which polynomial contains a term like *xy*²?

A $4xy - x^2y$ **B** $2x^2 + 3xy^2$ **C** $-x + y^2 - xy$ **D** $x^2 + y^2 + 4$

- 2. Are the terms in each pair like or unlike?
 - a) 5a and -2ab) $3x^2 \text{ and } x^3$ c) $2p^3 \text{ and } -p^3$ d) $4ab \text{ and } \frac{2}{3}ab$ e) $-3b^4 \text{ and } -4b^3$ f) $6a^2b \text{ and } 3a^2b$ g) $9pq^3 \text{ and } -p^3q$ h) $2x^2y \text{ and } 3x^2y^2$
- **3.** Write one like term and one unlike term for each.

Term	Like	Unlike	Term	Like	Unlike	Term	Like	Unlike
4p			-3a ²			-k ³		
2x			-4mn ⁴			2ab		
-pq ³			3b ² d ²			-7b ⁵		

4. Is it possible to simplify each expression? How do you know?

a) 8 <i>a</i> + 3 <i>a</i>	b) 5 <i>m</i> + 2 <i>n</i>	c) 3 <i>p</i> + <i>p</i>
d) 3 <i>t</i> – 7 <i>t</i>	e) 4 <i>x</i> – 3	f) $-v - 4v + 2v$
g) $6c^2 - c^2 - 3c^2$	h) <i>r</i> ² + 3 <i>r</i> + 7	

5. Simplify each expression.

a) <i>p</i> + 2 <i>p</i>	b) 7 <i>g</i> – 4 <i>g</i>	c) 2a – 8a
d) 5 <i>x</i> – 2 <i>x</i>	e) 6q + q	f) $4y^2 + 5y^2$
g) <i>u</i> + 4 <i>u</i> – <i>u</i>	h) $7b^3 - 2b^3 - b^3$	

- 6. Collect like terms. Then, simplify.
 a) 4b + 3 2b + 1
 b) 2p 7 p + 4
 c) 1 + 3y + 4 + y

 - **d)** 5 x 1 2x **e)** 6a 2b + 3b + 2a **f)** 7r + 2 + 3r r 1
 - **g)** 9s 2s + 5t 4s **h)** -g 3h + 5h + 2g h
- 7. Simplify.a) 4 + v + 5v 10b) 7a 2b a 3bc) 8k + 1 + 3k 5k + 4 + k
 - **d)** $2x^2 4x + 8x^2 + 5x$ **e)** $12 4m^2 8 m^2 + 2m^2$ **f)** -6y + 4y + 10 2y 6 y
 - **g)** 5 + 3h + h 4 + h + 6 + 2h**h)** $4p^2 + 2q^2 - p^2 + 3p^2 - 7q^2$
- 8. Simplify.
 - **a)** 2a + 6b 2 + b 4 + a**b)** 4x + 3xy + y + 5x - 2xy - 3y
 - c) $m^4 m^2 + 1 + 3 2m^2 + m^4$ d) $x^2 + 3xy + 2y^2 - x^2 + 2xy - y^2$

Building Polynomial Expressions

An **expression** contains numbers and variables. An **equation** also contains numbers and variables, but it also contains an equal sign. An equation says that two expressions are equal.

For example: 3x + 5 is an expression. 4x - 2 is another expression.

3x + 5 = 4x - 2 is an equation that says, "3x + 5 is equal to 4x - 2"

Defining Variables: When we choose variables to use in expressions, we first have to DEFINE them (say what they're representing).

1. Ms. Bello works part-time as a scuba instructor. She earns \$145 for the summer, plus \$15 for each children's lesson and \$30 for each adult lesson that she gives.

a) Write an expression that describes Ms. Bello's total earnings for the season. *Define all variables*. Identify the variable and the coefficient of each term and explain what they mean.

Term	Variable	Meaning of Coefficient

b) One summer, Ms. Bello gave 9 children's lessons and 14 adult lessons. What were her total earnings?

2. The students at Northdale High School sell coupon books to raise money for a school trip. The school receives 45% of the money paid for the coupon books.

- a) Choose a variable to represent the money paid for the coupon books. Define it.
- b) Using your variable from part a), write the expression for the amount of money the school will receive.

- c) Shannon sold one coupon book to her grandmother for \$20. Calculate the amount of money the school receives on this sale.
- d) The sum of all coupon book orders was \$14 000. Use your formula to calculate how much the school will receive for this fundraiser.

The Distributive Property

 $5(4+3) \leftarrow$ There is more than one way to solve this problem.

Solution #1:

Solution #2:

Solution #2 is called the DISTRIBUTIVE PROPERTY. When you use this property, you are expanding.

Expand and simplify the following (if possible):

a) 4(x+3) + x - 5 b) -(2x+7) c) $x(x^2 + 2x - 4)$

d)
$$-4(x+3) - 2(2x-1)$$
 e) $4m(m-2) - (2m^2 - m)$ f) $\frac{1}{2}(2w-6) - \frac{2}{3}(6w-3)$

<u>PART 1 Practice</u>: Expand and simplify (if possible).

1. 2(x-4) **2.** $p(p^2-2p+1)$ **3.** -5(4m-3)

4.
$$-3h(4-h^2)$$
 5. $-(-w+5)$ **6.** $(x^3+3x-4)(4x)$

7.
$$(2y+5)(-6)$$
 8. $-4(d+3)+(d-1)$ **9.** $3(5a^2-7a+1)$

10.
$$3m(m-5) - (2m^2 - m)$$
 11. $(x-3) + (2x-5)$ **12.** $3[2+5(2k-1)]$

13.
$$5[4a - (a+2)]$$
 14. $2[3c - (c-2)] - 3[2c + (c+3)]$ **15.** $-y(2y-7)$

16.
$$3[-2(6-t)+5t]$$
 17. $3(a+2)+5(a-3)-(a+4)$ **18.** $3x(2x+3)+4(x^2+2x-4)$

19.
$$5g(2g-3) - 3(2g^2 - 4g + 3)$$
 20. $\frac{1}{2}(2w-6) - \frac{2}{3}(9w-6)$ **21.** $\frac{2}{3}(3m+5) + \frac{2}{5}(5m-4)$

Word Problems:

- 4x + 3**1.** A room has dimensions as shown: 3x
- **a)** Find a simplified expression for the perimeter.
- **b)** Find a simplified expression for the area.
- c) Repeat parts a) and b) if both the length and width are doubled.

- **d)** Has this doubled the perimeter? Justify your solution.
- e) Has this doubled the area? Justify your solution.
- 2. A rectangle has side lengths of (2x+5)cm and (5x-9) cm. Determine the simplified expression for the **perimeter** of the rectangle.

3. Steven is an architect designing a front entranceway in the shape of a large trapezoid (displayed below). To order tiling materials, he needs to determine the trapezoid's area. Write a simplified expression for the area of this trapezoid:

4. Laura claims, "I can calculate the perimeter of the field by using the formula P = 2 (l + w)" Tyler replies, "That's not right. The correct formula is P = 2l + 2w" Who is correct, Laura or Tyler? Can they both be right?

More Practice 5. Expand. a) 4(<i>x</i> + 2)	b) 5(x – 3)	c) 0.3(<i>x</i> + 5)	d) 4(2 <i>x</i> + 1)
e) $\frac{1}{2}(3x-2)$	f) 5(3 + 2 <i>x</i>)	g) <i>a</i> (<i>a</i> + 3)	h) s(s – 5)
i) − <i>y</i> (<i>y</i> + 2)	j) b(4 – b)	k) − <i>x</i> (6 − <i>x</i>)	l) -k(k - 3)
m) 4 <i>r</i> (<i>r</i> + 3)	n) 6m(m – 2)	o) 2 <i>x</i> (3 – <i>x</i>)	p) −3 <i>y</i> (5 + <i>y</i>)

6. Expand and simplify.

a)
$$3x + 2(5x - 3)$$
 b) $14 - 3\left(4n - \frac{1}{3}\right)$ **c)** $3(2h - 3) + 2(h + 3)$

d)
$$-2(3y-3) + 3(2y+2)$$
 e) $-6 + 5(2-k) - 4k$ **f)** $4(3u-1) + 2(3-2u)$

g)
$$2(x^2 + 2x + 1) + 3(x^2 + 3)$$
 h) $5(y-2) - 4\left(2y - \frac{1}{2}\right)$ **i)** $3(t^2 - 2t + 1) - 4(t+2)$

j)
$$2(e-4) + 4(3e+2) - 5(2e-4)$$
 k) $x(2x-3) - x(4+x)$ **l)** $2a(a+2) + 4a(a+1)$

m)
$$3r(r-3) - 2r(r+2)$$
 n) $k(4k-2) - k(k+3)$ **o)** $-d(3-d) + 2d(d+5)$

p)
$$4x(x-1) - x(2-x)$$
 q) $2(a^2 + 3a - 10) - a(a+2)$ **r)** $3x(x^2 + 2x - 8) - 2(x-1)$

s)
$$2(y-1) + y(y^2 - y - 2)$$

t) $-2r(r+5) + 3r(r-3)$

Common Factoring

Factoring is the opposite of the distributive property. The greatest common factor (**GCF**) for a polynomial is the largest monomial that you can divide out of each term in the polynomial.

Steps:	Ex 1:	$6x^2 - 8x$	$E_{x 2:} 9x^2y^2 + 6xy^2 - 12x^3y^3$
STEP 1: Look at the coefficients. Is there a GCF?			
 STEP 2: Look at the variables. Is there a variable that is common in every term? If so, take out the smallest exponent. STEP 3: Identify the GCF. Then, divide every term by the GCF (this is the left over that will go into the brackets). STEP 4: Write it appropriately in factored form. *TO CHECK: You multiply the GCF back into every term to see if it matches the original polynomial. 			

Examples: Factor fully.

1.	6x+3	2.	49 <i>p</i> -14	3.	$3x^2 + 9x - 3$
4.	$16x^3 + 8x^2 + 4x$	5.	$20x^3y^2 + 5x^4y - 10x^2y^2$	6.	9x ³ +6x ⁵ +12x ²

7.	$8xy^2 + 4x^2y - 6xy^5$	8. 3x - 6	9. $15x + 10y + 25$
----	-------------------------	-----------	---------------------

13. $5x^5 - 4x^4 + 3x^3$ 14. $x^3 + x^2$ 15. $6x^5 + 2x^3$

16. $2x^3 - 4x^2 + x$ 17. $3x^6 - 2x^5 + 4x^4 - 6x^2$ 18. $16x^5 - 32x^4 + 24x^3$

19. $36y^{15} - 27y^{10} - 18y^5$ 20. $8z^2 - 12z + 20$ 21. $16x^2 - 24x + 40$

22. $20x^4 - 12x^3 + 36x^2 - 4x$ 23. $18x^8 - 81x^6 + 27x^4 - 45x^2$ 24. $12x^{10} - 6x^3 + 3x^2$

25. 3abc-4ab 26. 2xy-8xyz 27. $x^2y^3-x^3y^2$

28. $8ab^3 + 12a^2b^2$ 29. $a^5b^5 - a^8b^2$ 30. $x^6yz^2 + x^2y^4z^3 - x^3y^3z^4$