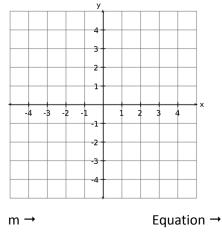
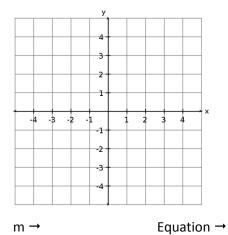


Horizontal and Vertical Lines

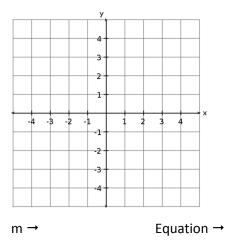
http://www.mathsisfun.com/flash.php?path=%2Falgebra/images/line-toequation.swf&w=600&h=600&col=%23FFFFF&title=Equation+of+a+Line+from+2+Points

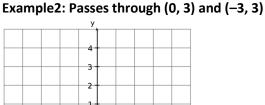

A vertical line has an undefined slope

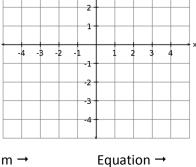
A **horizontal** line has a slope of **0**

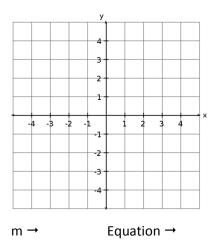

Practice 8 – Horizontal and Vertical Lines

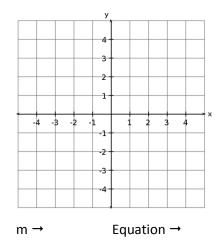
22. Graph each of the following lines, determine the slope, and determine the equation:


Example 1: Passes through (-2, 4) and (-2, -1)



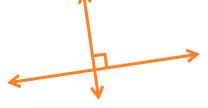

a. Passes through (3, 4) and (3, -2)


c. Passes through (-2, -2) and (-2, 3)



b. Passes through (-1, 0) and (5, 0)

d. Passes through (-4, 1) and (-1, 1)



- 23. Determine the slope of each of the following lines (Hint you do not NEED to graph):
 - a. Passes through (3, -4) and (-8, -4)
 - b. Passes through (5, -4.8) and (5, -3.9)
 - c. Passes through (-7.2, 9.2) and (-3.5, 9.2)
 - d. Passes through (3.5, -3.5) and (3.5, 3.5)
- 24. Determine the equation of each of the following lines (Hint you do not NEED to graph):
 - a. Passes through (0, 4) and (-5, 4)
 - b. Passes through (-2, 8.4) and (-2, 90)
 - c. Passes through (3.5, 5.6) and (3.5, 1.2)
 - d. Passes through (9.3, 6.7) and (-9.3, 6.7)
 - e. Slope is undefined and it passes through (5,6)
 - f. Passes through (-3,4) and has a slope of 0
 - g. Is horizontal and passes through (3,2)
 - h. Is vertical and passes through (-83.4, -17.2)
- 25. Determine whether the following lines are vertical, horizontal or neither:
 - a. y = 5
 - b. x = -3.4
 - c. Passes through (7.8, 4) and (7.8 4)
 - d. Passes through (5.73, 4.02) and (6.73, -4.02)
 - e. Passes through (6.5, 4.2) and (-6.5, -4.2)
 - f. y = 45

Perpendicular lines meet at a right angle (90°)

Parallel lines are two lines that will go on forever and never meet

Reminders:

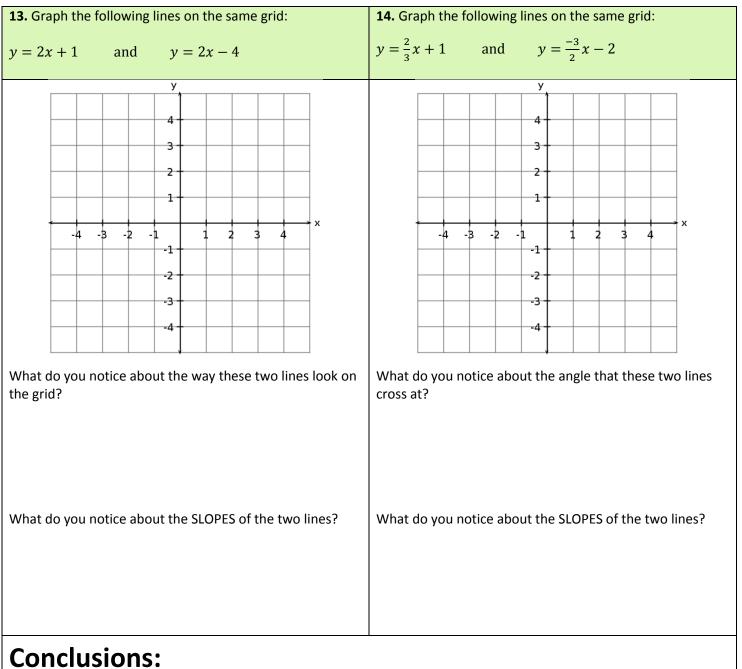
A reciprocal (or multiplicative inverse) is when you take a fraction and flip it upside down

For example, the reciprocal of $\frac{1}{2}$ is $\frac{2}{1}$ or 2

Mini Practice:

Number	Reciprocal
7	
2	
3	

A **negative reciprocal** is when you take the reciprocal of a number, and then change the sign


For example, the negative reciprocal of $\frac{1}{2}$ is $\frac{-2}{1}$ or -2

To find a negative reciprocal:

- 1. Write the number as a fraction
- 2. Flip the fraction upside down (switch the numerator and the denominator)
- 3. Change the sign of the fraction. If it is positive, make it negative. If it is negative, make it positive.

Mini Practice:

Number	Reciprocal	Negative Reciprocal
5		
-6		
$\frac{1}{5}$		
$\frac{-3}{4}$		
13.4		
-1		

Parallel and Perpendicular Lines

CONClusions.							
Parallel lines	Perpendicular lines						

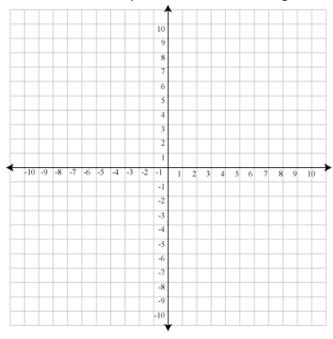
Practice 9 – Parallel and Perpendicular Lines

26. For each of the following, find the equation of a line that is parallel, **and** a line that is perpendicular:

		Parallel	Perpendicular
a.	Example 1: y = -4x + 2		
b.	Example 2: y = 5		
C.	y = -3x + 4		
d.	$y = \frac{2}{3}x - 5$		
e.	A line that passes through (4, 5) and (–7, 2)		
f.	A line that passes through (-3, -2) and (-1, -6)		
g.	y =4		
h.	x = 3		
i.	y = 4x - 2.5		
j.	$y = \frac{-1}{2}x = 10$		

		\rightarrow	8
k.	A line that passes through	L	\sim
	(0, –3) and (9, 17)		
١.	A line that passes through		
	(4.5, 6.7) and (2.3, -4.1)		
	(4.3, 0.7) and (2.3, -4.1)		

27. Conclude whether the following pairs represent parallel lines, perpendicular lines, or neither, and state WHY: **Example 3:** y = 8x - 15 and y = -0.125x + 3


a.	$y = \frac{1}{4}x - 3$ and $y = \frac{1}{3}x - 4$	d.	γ = 4x	and	$y = \frac{1}{4}x + 8$
b.	$y = -3x + 10$ and $y = \frac{1}{3}x - 14$	e.	y = 3x + 2	and	y = -3x - 1
С.	$y = 0.5x - 13$ and $y = \frac{1}{2}x + 6$	f.	y = -2x + 12	and	y = 13 –2x

Using parallel and perpendicular lines to analyze lines and triangles: **Example 4: Line AB passes through A(0,4) and B(3,2). Line CD passes through C(6,0) and D(4, -3).** a. Plot these points and draw the lines.

- 10 9 8 7 6 5 4 3 2 1 -10 -9 -8 -7 -6 -5 -4 -3 -2 2 3 4 5 6 1 10 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
- b. Do these lines appear to be parallel, perpendicular, or neither? Explain.
- c. Find the slopes of the line segments.

d. Explain how the slopes can be used to conclude whether these lines are parallel, perpendicular, or neither.

- 28. A triangle has vertices A (1, 2), B(3, 8) and C(6, 7).a. Plot these points and draw the triangle.
- b. Does this appear to be a right triangle? Explain.
- c. Find the slopes of the line segments that form this triangle.

d. Explain how the slopes can be used to conclude whether or not this is a right triangle. Is it?

Standard Form

We've talked about equations of lines in Slope y-Intercept Form: y = mx + b. Sometimes we will see equations of lines in a different form, called **Standard Form**, which is:

$$\mathbf{Ax} + \mathbf{By} + \mathbf{C} = \mathbf{0}$$

x and y are variables

A, B, and C are numbers

- A, B, and C are integers (positive or negative whole numbers)
- A cannot be negative
- A and B cannot *both* be zero

15. You are given the equation of a line in Standard Form, which is: 4x + 2y - 10 = 0. What is the equation of this line in Slope y-Intercept Form?

To find the equation of this line in y = mx + b form, you need to **rearrange** to **isolate y**.

$$4x - 2y - 10 = 0$$

16. You are given the equation of a line in Slope y-Intercept Form, which is: $\mathbf{y} = -3\mathbf{x} + 5$. What is the equation of this line in Standard Form?

To find the equation of this line in y = mx + b form, you need to **rearrange** to **isolate 0**.

$$\mathbf{y} = -\frac{2}{3}\mathbf{x} + \frac{3}{4}$$

Practice 10 – Standard Form

29. The following equations are in Standard Form. Convert them to Slope y-Intercept Form.

a. 5x + 6y + 12 = 0 f. 9x + 17y - 14 = 0

b.
$$7x - 2y + 1 = 0$$
 g. $16x + 34y + 300 = 0$

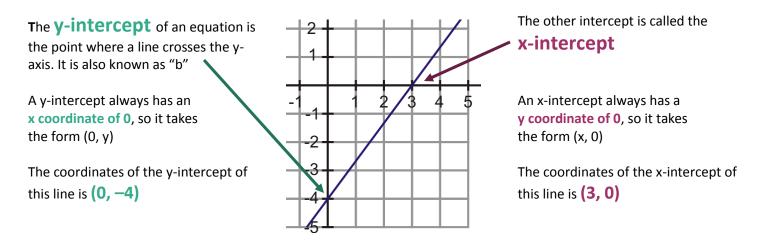
c.
$$x - 5y - 2 = 0$$
 h. $x - y = 0$

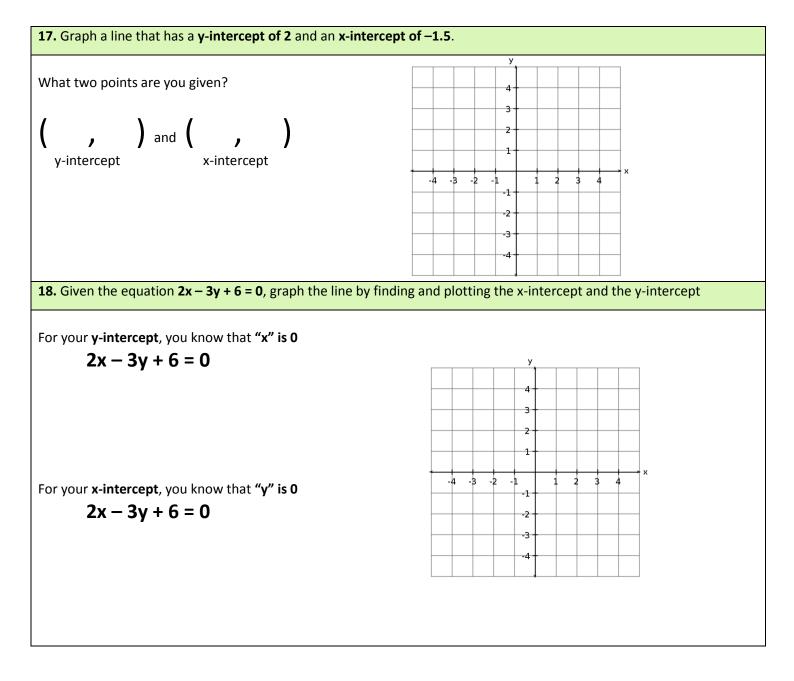
d. 9x + 4y = 0 i. 15x + 35y - 70 = 0

e.
$$8x + 3y - 13 = 0$$
 j. $4x + y - 17 = 0$

30. The following equations are in Slope y-Intercept Form. Convert them to Standard Form. a. y = 12x - 4 f. y = -15x - 7

b.
$$y = -3x - 1.5$$
 g. $y = \frac{7}{8}x + \frac{3}{7}$


c.
$$y = \frac{3}{5}x - 4.6$$
 h. $y = 4x - \frac{2}{3}$


d.
$$y = \frac{2}{3}x - \frac{1}{2}$$

i. $y = -\frac{4}{5}x - \frac{9}{10}$

e.
$$y = 4.5x - 13.2$$
 j. $y = \frac{1}{3}x - \frac{7}{9}$

Graphing from Standard Form

10

Practice 11 – Graphing from Standard Form

31. The following equations are in Standard Form. Graph each line on the grid at the right by finding the x and y intercepts. LABEL each line.

a.	2x - y + 5 = 0																					
			-		-			-		-	-	10		_					_	-	+	
												9										
b.	2x - 3y - 12 = 0											8		_					_	_	_	
			-					_		_	_	7		_					_	_	_	
		_	-		_			_		_	-	6		_					_	_	_	
		_	-	-	_	_		-	_	-	-	4		_					_	_	-	_
		_	-	_	-			-	-	-	-	4		_					_	-	_	_
с.	x + 18y - 9 = 0	_	-	_	-	-		-	-	-	-	2		_					_	-	_	_
		_	-	_	-		_	-	-	-	-	- 1		_					_	-		_
		+	-10	-9	-8	-7	-6	-5	-4	-3	-2		1	2	3	4	 6	7	8	9	10	→
		-		ŕ	Ľ.	ŀ	ľ	-	·	-	-	-1	-	-	,	4	 0	- '		-	-10	_
		-	-	-	-	-	-	-	-	-	-	-2		-					-	-	-	-
d.	38x - 22y + 209 = 0	-	-		-	-		-	-	-	-	-3		-					-	-	-	-
			-		-	-	-	-	-	-	-	-4		-	_				-	-	-	_
		_	-		-	-		-	-	-	-	-5		-						-	-	_
			-		-			-	-	-	-	-6								-	-	-
	2 0 24 0		-		-			1	-		-	-7			_					-	-	_
e.	3x - 8y + 24 = 0		-			-		1	-	1	1	-8									-	
			\vdash					F		F	t	-9										
			\vdash					\square	-		1	-10									-	-

32. The following equations are in Standard Form. Graph each line on the grid at the right by finding the x and y intercepts. LABEL each line.

a. $4x - y - 8 = 0$	
b. $15x - 4y + 30 = 0$	
c. $7x - 4y - 28 = 0$	3 2 1 1 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 1
d. $3x - 2y - 6 = 0$	
	-7

Word Problems in Standard Form

When we've written equations from word problems in the past, we've typically selected an independent variable and a dependent variable, then written the equation in y = mx + b form (Slope y-Intercept Form). Word problems that have variables where there is **NOT a dependent variable and an independent variable** are best written in **Standard Form**.

19a. You are in charge of buying the burgers and hotdogs for a par and the hotdogs are \$2 each. Write an equation that relates the nu can buy.	
Define your variables:	
Create your equation:	
19b. Convert your equation to Standard Form.	
19c. Graph this relationship by finding and plotting the x- and y-int	ercepts.
Find your y-intercept: Find your x-intercept:	
19d. Using your EQUATION, determine how many hotdogs you car	buy if you buy 15 burgers.

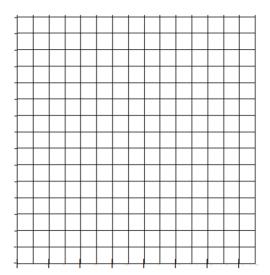
Practice 12 – Word Problems in Standard Form

- 33. You are buying \$48 worth of lawn seed that consists of two types of seed. One type is Ryegrass that costs \$4 per pound, and the other type is Bluegrass that costs \$6 per pound.
 - a. Write an equation that represents the different amounts of Ryegrass and Bluegrass you can buy. Define your variables.

Define your variables:

Let <u>r</u> be _____

Let <u>b</u>be _____


Create your equation:

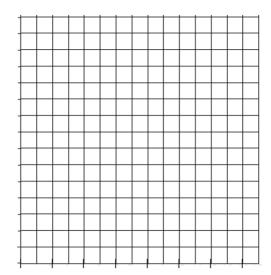
b. Convert your equation to standard form.
Ax + By + C = 0

c. Graph this relationship by finding and plotting the x- and y-intercepts.

Find your y-intercept:

Find your x-intercept:

d. Using your equation, determine how many pounds of Bluegrass you can buy if you buy 3 pounds of Ryegrass.


- 34. Your grandmother made 240 oz. of jelly. You have two types of jars. The first holds 10 oz. And the second holds 12 oz.
 - a. Write an equation that represents the different number of 10-oz. jars and 12-oz. jars that will hold all of the jelly. Define your variables.

- b. Convert your equation to standard form.
- Graph this relationship by finding and plotting the x- and y-intercepts.

- 35. You are buying \$30 worth of birdseed that consists of two types of seed. Thistle seed attracts finches and costs \$2 per pound. Dark oil sunflower seed attracts many kinds of sunbirds and costs \$1.50 per pound.
 - a. Write an equation that represents the different amounts of \$2 thistle seed and \$1.50 dark oil sunflower seed that you can buy. Define your variables.

b. Convert your equation to standard form.

c. Graph this relationship by finding and plotting the x- and y-intercepts.

- 36. A 100-point test has x number of questions worth 2 points each and y number of questions worth 4 points each.
 - a. Write an equation that describes all possible numbers of questions that may be on the test. Define your variables.
 - b. Convert your equation to standard form.
 - c. If you have 24 questions worth 4 points each, how many questions will be worth 2 points? Use your equation to solve.

- d. Graph this relationship if you feel that you need extra practice graphing.
- 37. Louise has \$36 in five-dollar bills and loonies.
 - a. Write an equation that represents how many of each denomination she could have. Define your variables.
 - b. Convert your equation to standard form.
 - c. If Louise has 2 five-dollar bills, how many loonies does she have? Use your equation.

d. Graph this relationship if you feel that you need extra practice graphing.

- 38. The store at which Andy usually shops is having a sale. Roast beef costs \$4 a pound and shrimp costs \$10 a \swarrow pound.
 - a. Write an equation to describe different possible combinations of roast beef and shrimp that he can buy for \$96. Convert your equation to standard form.

- b. What is the greatest amount of shrimp he can buy? Use your equation.
- c. Graph this relationship if you feel that you need extra practice graphing.
- 39. It will take 20 points to make the playoffs, the hockey team coach told the players. "We get 2 points for a win and 1 point for a tie."
 - a. Write an equation to describe the numbers of wins and ties that will let the team make the playoffs. Convert your equation to standard form.
 - b. If the team wins 7 games, how many tie games will need to occur? Use your equation.
 - c. Graph this relationship if you feel that you need extra practice graphing.
- 40. The perimeter of a fenced rectangular area is 75 m.
 - a. Write a linear model relating the length and width. Convert your equation to standard form.
 - b. If the length is 5 m, find the width.
 - c. Graph this relationship if you feel that you need extra practice graphing.