Principles of Mathematics 9, pages 279-287

A

1. a) Determine the slope.

- b) Determine the vertical intercept.
- c) Write an equation for the relation.
- 2. a) Determine the slope.

- b) Determine the vertical intercept.
- c) Write an equation for the relation.

3. Make a table of values and graph each relation. Draw a right triangle on your graph to find the slope.

a)
$$y = 3x - 2$$

b)
$$y = -2x + 1$$

c)
$$y = \frac{1}{2}x$$

d)
$$y = -0.5x - 1$$

B .

4. Use the rule of four to represent this relation in three other ways.

X	У
0	1
1	3
. 2	5
3	7
4	9

- a) Use a graph.
- **b)** Use words.
- c) Use an equation.
- 5. Use the rule of four to represent this relation in three other ways.

X	у
0	3
1	1
2	-1
3	-3
4	- 5

- a) Use a graph.
- b) Use words.
- c) Use an equation.

- 6. A cleaning service charges \$50 plus \$10 per room to clean an apartment.

 Represent the relation using numbers, a graph, and an equation.
- 7. The cost of renting a bicycle is \$20.00 plus \$2.00/h.
 - a) Graph this relation.
 - b) Identify the slope and the vertical intercept of the line. What do they represent?
 - c) Is this a direct or a partial variation? Explain.
 - d) Write an equation relating the cost and the rental hours.
- 8. d varies directly with t. When t = 5, d = 11.
 - a) Find the slope and the vertical intercept of the line.
 - b) Write an equation for this relation.
 - c) Graph this relation.
- 9. Complete the rule of four for this relation by representing it numerically, in words, and with an equation.

- \mathbf{C}
- **10.** Complete the rule of four for this relation by representing it numerically, in words, and with an equation.

- 11. Complete the rule of four for the relation y = 3x + 2 by representing it numerically, graphically, and in words.
- 12. A water tank is being filled. The table shows the volume, in kilolitres, of water for the elapsed time, in minutes.

Time (min)	0	20	40	60 [*]	80
Volume of Water (kL)	20	50	80	110	140

- a) Confirm that this relation is linear.
- b) Graph this relation.
- c) Find the slope of the graph as both a fraction and a decimal. Is the slope constant? What does the slope represent?
- d) Write an equation for the volume of water in terms of the time.
- e) Use your graph or equation to find the volume of water after 30 min.

Solutions for "Connecting Variation, Slope, and First Differences"

Day 5

5.6 Connecting Variation, Slope, and First Differences, pages 93–94

1. a) 2 b) 2 c)
$$y = 2x + 2$$

2. a)
$$-\frac{1}{2}$$
 b) -1 c) $y = -\frac{1}{2}x - 1$

3. Tables and graphs may vary. Sample tables are shown.

ı)		
	X	У
T	0	-2
Ī	1	1
	2	4
Г	J	7

slope = 3

o)		
	X	у
	0	1
	1	1
	2	-3
	3	- 5
	4	- 7
10	ope = -2	

slope = $\frac{1}{2}$

Solutions for "Connecting Variation, Slope, and First Differences"

Day 5

1 -1.52 -2 -2.5 4 slope = -0.5

b) Each time the value of x increases by 1, the value of y increases by 2. The graph is a straight line that does not pass through (0, 0). This is a partial variation.

c)
$$y = 2x + 1$$

b) Each time the value of x increases by 1, the value of y decreases by 2. The graph is a straight line that does not pass through (0, 0). This is a partial variation.

c)
$$y = -2x + 3$$

U	
Number of Rooms, n	Cost of Cleaning, C (\$)
0 .	50
1	60
2	70
-3	80
4	90

$$C = 10n + 50$$

7. a) The graph is a line starting at (0, 20) and passing through (1, 22) and (2, 24).

- b) slope 2, cost of renting the bicycle for 1 h; vertical intercept 20, cost of renting the bicycle at the start of the rental
- c) partial variation; graph is a straight line that does not pass through (0, 0)
- **d)** C = 2t + 20
- **8. a)** 2.2, 0 **b)** d = 2.2t

9.		
	х	у
	-2	-3
	-1	-1
	0	1
	1	2

y varies partially with x. As the value of x increases by 1, the value of y increases by 2. y = 2x + 1

10.

· .	
x	у
-1	5
0	. 2
1	–1
2	-4

y varies partially with x. As the value of x increases by 1, the value of y decreases by 3. y = -3x + 2

Day 5

Solutions for "Connecting Variation, Slope, and First Differences"

11. Tables and graphs may vary. A sample table is shown.

10W11.			
	X	У	
	0	2	
	1	5	
	2	8	
	3	11	
Г	4	14	

y varies partially with x. As the value of x increases by 1, the value of y increases by 3.

12. a) The relation is linear. As the value of *t* increases by 20 min, the volume of water increases by 30 kL.

c) $\frac{3}{2}$, 1.5; constant; it represents that 1.5 kL of water

fills the water tank every minute.

d) V = 1.5t + 20 **e)** 65 kL