#### GEOMETRY

## **Classifying Triangles**

Classifying **Scalene Triangle Isosceles Triangle Equilateral Triangle** by Side All 3 side lengths and angles are 2 side lengths (and 2 angles) All side lengths are the same. Length different. are the same All angles are 60° Classifying **Acute Triangle Right Triangle Obtuse Triangle** by Angle All angles are less than 90° One angle is exactly 90° One angle is more than 90° Measure

Any triangle can be classified by side length, or by its angle measures

#### **Polygons**

A polygon is a closed figure formed by 3 or more line segments

| Polygon Name  | # of sides | Polygon Name | # of sides | Polygon Name | # of sides |
|---------------|------------|--------------|------------|--------------|------------|
| Triangle      | 3          | Hexagon      | 6          | Nonagon      | 9          |
| Quadrilateral | 4          | Heptagon     | 7          | Decagon      | 10         |
| Pentagon      | 5          | Octagon      | 8          |              |            |

A regular polygon – is a polygon where all side lengths are equal (so all angles are equal too).

e.g.

← Regular Octagon

← Irregular Octagon

#### **Quadrilaterals**



### **Interior Angles**

If you add up the interior angles in a polygon, the answer will be constant, depending on the type of polygon:

| Type of       | Sum of Interior |
|---------------|-----------------|
| Polygon       | Angles          |
| Triangle      | 180°            |
| Quadrilateral | 360°            |
| Pentagon      | 540°            |
| Hexagon       | 720°            |

Here's the formula to calculate the total: *Let n be the number of sides the polygon has* 

Sum of interior angles = 180(n - 2)

### **Exterior Angles**

For *any* polygon, the sum of the exterior angles is *always* 360°

# **Angle Patterns**

When two or more *parallel lines* intersect with a *transversal*, angle patterns are created



| Property Name        | Memory Aid                  | Description                                                                       | Diagram                                                                                                                                                                                                   |                  |
|----------------------|-----------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Opposite angles      | X Pattern                   | When two lines<br>intersect, the<br>opposite angles<br>are <b>equal</b>           | $ \begin{array}{c} A \\ B \\ C \\ D \\ \hline \\ B = C \\ B = C \\ \hline \\ F = G \\ \hline \\ F = G \\ \end{array} $                           |                  |
| Alternate Angles     | Z Pattern                   | Alternate<br>angles are<br><i>equal</i>                                           | $ \xrightarrow{A \ B} C = F $ $ \xrightarrow{E \ F} D = E $                                                                                                                                               |                  |
| Corresponding Angles | <b>F</b> <sub>Pattern</sub> | Corresponding<br>angles are<br><i>equal</i>                                       | $ \begin{array}{c} G \\ H \\ \hline \\ A \\ B \\ \hline \\ C \\ D \end{array} \end{array} \xrightarrow{D = H} \\ C = G \\ \hline \\ E \\ F \\ \hline \\ G \\ H \end{array} \xrightarrow{F = B} \\ F = B $ |                  |
| Co-interior Angles   | C Pattern                   | Co-interior<br>angles have a<br><i>sum of 180°</i><br>(they are<br>supplementary) | $\xrightarrow{A \ B} \xrightarrow{D+F}$                                                                                                                                                                   | = 180°<br>= 180° |