Classifying Triangles

Any triangle can be classified by side length, or by its angle measures

Classifying by Side Length	Scalene Triangle All 3 side lengths and angles are different.	Isosceles Triangle 2 side lengths (and 2 angles) are the same	Equilateral Triangle All side lengths are the same. All angles are 60°

Polygons

A polygon is a closed figure formed by 3 or more line segments

Polygon Name	\# of sides	Polygon Name	\# of sides		Polygon Name
\# of sides					
Triangle	3	Hexagon	6	Nonagon	9
Quadrilateral	4	Heptagon	7	Decagon	10
Pentagon	5	Octagon	8		

A regular polygon - is a polygon where all side lengths are equal (so all angles are equal too).
e.g.

\leftarrow Regular Octagon
$\leftarrow \leftarrow$ Irregular Octagon

Quadrilaterals

Some important quadrilaterals:
Square
Rectangle
Parallelogram
Rhombus
Trapezoid
Kite

Complementary and Supplementary

Supplementary angles add up to 180°

Interior Angles

If you add up the interior angles in a polygon, the answer will be constant, depending on the type of polygon:

Type of Polygon	Sum of Interior Angles	Here's the formula to calculate the total: Let n be the number of sides the polygon has
Triangle	180°	
Quadrilateral	360°	Sum of interior angles $=\mathbf{1 8 0}(\mathbf{n}-\mathbf{2})$
Pentagon	540°	
Hexagon	720°	

Exterior Angles

For any polygon, the sum of the exterior angles is always 360°

Angle Patterns

When two or more parallel lines intersect with a transversal, angle patterns are created

Property Name	Memory Aid	Description	Diagram	
Opposite angles		When two lines intersect, the opposite angles are equal		$\begin{aligned} & A=D \\ & B=C \\ & E=H \\ & F=G \end{aligned}$
Alternate Angles	Pattern	Alternate angles are equal		$\begin{aligned} & C=F \\ & D=E \end{aligned}$
Corresponding Angles	$\Gamma_{\text {Pattern }}$	Corresponding angles are equal		$\begin{aligned} & \mathrm{D}=\mathrm{H} \\ & \mathrm{C}=\mathrm{G} \\ & \mathrm{E}=\mathrm{A} \\ & \mathrm{~F}=\mathrm{B} \end{aligned}$
Co-interior Angles	Pattern	Co-interior angles have a sum of 180° (they are supplementary)		$\begin{aligned} & D+F=180^{\circ} \\ & C+E=180^{\circ} \end{aligned}$

