Linear Relations - Test Review

The highlighted titles indicate what you need to know for the test, followed by practice questions.

Summary (what you need to know):

A. How to calculate slope of an object
B. How to calculate slope from two points
C. How to graph (from 2 points)
D. \quad (from a point and a slope)
E. (from an equation)
F. How to determine the equation of a line from a word problem
G. How to create a table of values from an equation
H. How to identify the y-intercept on a graph
I. How to identify direct and partial variation from: a graph
J.
K.
words
an equation
L.
a table
M. How to calculate first differences
N. Putting it all together (Rule of 4)

A. How to calculate slope of an object

1. What are the slopes of each of these objects?
a.

b.

18 cm
2. Joseph and Chris both calculated the pitch (slope) of the roof pictured below. Joseph calculated the run from points D to E, and the rise from points A to D. Chris calculated the run from points B to C and the rise from points A to B. Who calculated the slope correctly (one of the students, neither, or both)? Explain.

3. A ladder reaches 8 m up a wall, and its foot is 2 m from the base of the wall. What is its slope?
4. A ladder reaches 30 m up a wall and has a slope of 3.2 How far is the base of the ladder from the wall?
5. The tops of two houses are connected by a phone line. One house is 15 m tall, and the other one is 17 m tall. If the houses are 12.5 m apart, what is the slope of the phone line?

B. How to calculate slope from two points

6. Without graphing, determine the slope of the line that passes through each of the two points:
a. $(3.4,180$ and $(2.9,15)$
b. $(198,-298)$ and $(-23,-137)$
c. $(-2,4)$ and $(-5,-1)$
d. $(39,13)$ and $(-3,-12)$
e. $(-30,39)$ and $(-2,15)$
f. $(-3.5,14)$ and $(91,48)$

C. How to graph (from 2 points)

7. Graph each of the following:
a. $(-4,5)$ and $(-3,-5)$
b. (0, -2.5) and (4, -2)
c. $(3,1)$ and $(-2,-4)$

D. How to graph (from a point and a slope)

8. Graph each of the following:
a. Passes through $(-4,5)$ and $m=3$

b. Passes through ($-1,-2$) and $m=\frac{-1}{3}$

c. Passes through ($0,-1$) and $m=-2$

E. How to graph (from an equation)

9. Graph each of the following:
a. $y=\frac{4}{5} x$
b. $y=\frac{-2}{3} x-4$
c. $y=7 x+3$

F. How to determine the equation of a line from a word problem

10. Determine the equation of the line represented by each situation, and answer any secondary questions. DEFINE YOUR VARIABLES.
a. Melissa is draining water out of her pool. After 4 h , she has 45000 L left. After 6 h , she has 42500 L left. Write an equation relating the volume of water and time. How full was the pool when Melissa started?
b. Jennifer works at a clothing store. She makes a flat salary, plus an hourly rate. She makes $\$ 825$ when she works a 25 h week. When she works 40 h , she makes $\$ 1050$. Write an equation relating total earnings to number of hours. Using your equation, determine how much she will make if she works a 50 h week.
c. Matt is taking a road trip and keeping track of the kilometres travelled, as well as the amount of gas he's left with. After 80 km , he has 42.8 L of gas left. After 450 km , he has 9.5 L of gas left. Write an equation relating number of kilometres travelled to total gas in the tank. Using your equation, determine how many kilometers he can drive until his tank is empty.
d. A plane is descending to land. It begins at 28000 feet. It hits the ground after 11.2 minutes. Create an equation to model this situation. How high will the plane be after 5 minutes?
e. A company is tracking its sales over the years. In year 0, it makes $\$ 358000$. By year 4, the company is making $\$ 376000$. When will the company's sales be $\$ 500000$?
f. Sarah is performing an experiment where she the measures the temperature of a cup of water while it cools down. The cup starts at $10^{\circ} \mathrm{C}$ and drops at a rate of $2.5^{\circ} \mathrm{C}$ each minute. When will it be $-15^{\circ} \mathrm{C}$?
g. Karen is renting a bus for a school trip. The bus company charges $\$ 100$ for the bus, plus $\$ 5$ per student. How much will it cost to rent the bus for 42 students?

G. How to create a table of values from an equation

11. For each of the following equations, create a table of values:
a. $\quad y=\frac{-1}{8} x-12$

b. $y=32 x-10$

c. $y=-3.5 x+1$

H. How to identify the y-intercept on a graph

12. For each of the following, determine the y-intercept:

I. How to identify direct and partial variation from a graph

13. For each of the graphs in the question above, identify the relation as being direct or partial.
a.
b.
c.

J. How to identify direct and partial variation from words

14. For each of the following situations, identify the relation as being direct or partial.
a. Betti charges $\$ 12 / \mathrm{hr}$ for her cleaning services, plus a $\$ 60$ house call fee
b. Bally Total Fitness charges $\$ 45$ per month for a gym membership, as well as a $\$ 70$ registration fee.
c. Kyle's kiddie pool begins with 100 L of water, and is emptying at a rate of 5 L each minute.
d. Akintoye's total earnings can be calculated by considering his $\$ 25 / \mathrm{hr}$ pay rate, minus his $\$ 50$ uniform cost.
e. A plan begins at 35000 feet in the air and descends at a rate of 2200 feet every minute.

K. How to identify direct and partial variation from an equation

15. For each of the following equations, identify the relationship as being direct or partial.
a. $y=\frac{-1}{8} x-5$
b. $y=-x+2$
c. $y=3.5 x$
d. $y=5 x+0$
e. $y=200-x$
f. $y=52+\frac{1}{2} x$

L. How to identify direct and partial variation from a table

16. For each of the following tables, identify the relationship as being direct or partial.
a.
b.

\mathbf{x}	\mathbf{y}
-2	8
-1	4
0	0
1	-4
2	-8

c.

\mathbf{x}	\mathbf{y}
1	0
2	5
3	10
4	15
5	20

M. How to calculate first differences

17. For each of the following, determine whether the relationship is linear or non-linear without graphing.
a.

\mathbf{x}	\mathbf{y}
0	19
1	16
2	13
3	10
4	7

b.

\mathbf{x}	\mathbf{y}
4	33.5
8	39.1
12	44.7
16	50.3
20	55.9

c.

\mathbf{x}	\mathbf{y}
0	1
3	4
6	9
9	16
12	25

N. Putting it all together (Rule of 4)

18. For each of the following situations, write an equation, draw a graph, and create a table of values.
a. You are visiting Montreal, and a taxi company charges a flat fee of $\$ 3.00$ for using the taxi and an additional $\$ 0.75$ per kilometer.
b. A plumber charges a fee of $\$ 40$ to make a house call. He also charges $\$ 15$ an hour for labour.
c. Beth and Liz are starting a business tutoring students in math. In one month, they rent an office that costs them $\$ 200$ and charge $\$ 25$ per hour per student.
d. Amanda is tracking the progress of her plant's growth. When she purchases the plant, it is 7 cm high, and it grows 2 cm per day.
e. A plane is taking off at a rate of 2000 feet per minute.
f. A 750 ml bucket has a hole and is leaking water at a constant rate of $5 \mathrm{ml} / \mathrm{s}$.
