Midterm Review: Exponents

Parts of a power

Expanded Form and Evaluated Powers

Power	Expanded Form	Evaluated
5^{2}	$(5)(5)$	25
-3^{4}	$-(3)(3)(3)(3)$	-81
$(-3)^{4}$	$(-3)(-3)(-3)(-3)$	81
$5 x^{4}$	$5(x)(x)(x)(x)$	$/ / / / / / / / / / / / / / / / / / / /$

Like and Unlike Terms

For terms to be LIKE they must have the same base and the same exponent (the coefficient can be anything)
Examples:
Like terms:
$5 x^{2}, \frac{1}{2} x^{2},-x^{2}$ and πx^{2}
$x^{2} y, y x^{2}$ and $4 x^{2} y$
Unlike terms:
X and X^{2}
$4 x^{2}$ and $4 x^{2} y$
$5 x^{2} y$ and $5 x y^{2}$

Substituting

Replace the letters with the KNOWN values for the letters. Then, evaluate using correct order of operations. Remember: put brackets around the number you're substituting.

$$
\begin{aligned}
& 3 a^{2}-5 b+a \quad \text { when } a=-4 \text { and } b=-1 \\
= & 3(-4)^{2}-5(-1)+(-4) \\
= & 3(16)+5-4 \\
= & 48+5-4 \\
= & 49
\end{aligned}
$$

Exponent Laws:

Exponent laws only apply for exponents with the SAME bases
Multiplication Rule
ADD the exponents, MULTIPLY the coefficients, keep the bases the SAME
$\left(4 x^{2}\right)\left(6 x^{3}\right)=24 x^{5}$
$\left(x^{2}\right)\left(x^{3}\right)=x^{5}$
$\left(4^{2}\right)\left(4^{3}\right)=4^{5}$
$\left(3 x^{4} y\right)\left(5 x^{2} y^{6}\right)=15 x^{6} y^{7}$

Division Rule

SUBTRACT the exponents, DIVIDE the coefficients, keep the bases the SAME

$$
\begin{array}{ll}
\frac{12 x^{7}}{3 x^{2}}=4 x^{5} & \frac{x^{7}}{x^{2}}=x^{5} \\
\frac{4^{7}}{4^{2}}=4^{5} & \frac{15 x^{7} y^{5}}{5 x y^{4}}=3 x^{6} y
\end{array}
$$

Power of a Power Rule

MULTIPLY the exponents, raise to the POWER for the coefficients, keep the bases the SAME
$\left(4 x^{2}\right)^{3}=64 x^{6}$
$\left(x^{2}\right)^{3}=x^{6}$
$\left(4^{2}\right)^{3}=4^{6}$
$\left(3 x^{4} y\right)^{2}=9 x^{8} y^{2}$

Negative Exponents

To make the exponent positive, take the reciprocal, then simplify

$$
\begin{array}{c|c}
x^{-5}=\frac{1}{x^{5}} & 3 x^{-5} y^{2}=\frac{3 y^{2}}{x^{5}} \\
\left(2 x^{3} y^{4}\right)^{-2}=\frac{1}{\left(2 x^{3} y^{4}\right)^{2}} & \frac{15 x^{7} y^{5}}{5 x y^{4}}=3 x^{6} y
\end{array}
$$

Zero Exponents

Anything to the power of 0 equals 1

$$
4 x^{0}=4(1)=4
$$

$$
\left(4 x y^{2}\right)^{0}=1
$$

$$
5 x^{0} y^{4}=5(1) y^{4}=5 y^{4}
$$

$$
\frac{15 x^{7} y^{5}}{\left(5 x y^{4}\right)^{0}}=\frac{15 x^{7} y^{5}}{1}=15 x^{7} y^{5}
$$

Combining the Exponent Laws

Usually do brackets, then apply the power of a power rule, multiplication rule, and then the division rule - always follow proper order of operations. Use the negative exponents rule to make exponents positive.

$$
\begin{aligned}
& {\left[\left(4^{2}\right)\left(4^{5}\right)\right]^{3}(4)} \\
& \left(4^{6}\right)\left(4^{3}\right) \\
& =\frac{\left(4^{7}\right)^{3}(4)}{4^{9}} \\
& =\frac{\left(4^{21}\right)\left(4^{1}\right)}{4^{9}} \\
& =4^{13} \\
& {\left[(5 x y)\left(3 x^{2} y^{4}\right)\right]^{2}} \\
& \left(9 x^{2} y^{7}\right)\left(x^{0} y^{9}\right) \\
& =\frac{\left(15 x^{3} y^{5}\right)^{2}}{9 x^{2} y^{16}} \\
& =\frac{225 x^{6} y^{10}}{9 x^{2} y^{16}} \\
& =25 x^{4} y^{-6} \\
& =\frac{25 x^{4}}{y^{6}}
\end{aligned}
$$

Midterm Review: Polynomials

Simplifying

Add/subtract like terms only. You may collect like terms first (move the terms around so that the like ones are together).

Example \#1:	$4 x-5+3 x-1$
Collect like terms:	$=4 x+3 x-5-1$
Simplify:	$=7 x-6$

Example \#2:

$$
-x^{2}-12 x+3 y-6 x y-3-5 x^{2}+2 x y
$$

Collect like terms: $\quad=-x^{2}-5 x^{2}-6 x y+2 x y-12 x+3 y-3$
Simplify:

$$
=-6 x^{2}-4 x y-12 x+3 y-3
$$

Distributive Property: Expanding

Multiply the number outside of the brackets to ALL of the terms in the brackets.

$=-3 x^{2}+36 x-15$
You may need to apply the exponent laws:

$=-3 x^{3}+36 x^{2}-15 x$

Expanding and Simplifying

Multiply the number outside of the brackets to ALL of the terms in the brackets. Then, simplify by adding and subtracting any like terms.

$$
\begin{aligned}
& \\
= & 12 x+21+5-4 x+36 \\
= & 12 x-4 x+21+5+36 \\
= & 8 x+62
\end{aligned}
$$

Midterm Review: Solving Equations

Solving for an unknown

Simplify as much as you can first.
Using opposite operations, isolate the variable (Get x by itself).

$$
4 x+3=-x-7
$$

$$
4 x+x+3=-x+x-7
$$

$$
5 x+3=-7
$$

$$
5 x+3-3=-7-3
$$

Tip:
Keep equal signs lined up to stay organized

$$
\begin{aligned}
5 x & =-10 \\
\frac{5 x}{5} & =-\frac{10}{5} \\
x & =-2
\end{aligned}
$$

Expand first (distributive property) if needed, then continue solving.

$$
\begin{aligned}
3(-b+7)-5 & =9 b+12-(4 b+8) & & \text { ↔Distribute (expand) } \\
-3 b+21-5 & =9 b+12-4 b-8 & & \text { ↔Simplify by adding/subtracting like terms } \\
-3 b+16 & =5 b+4 & & \\
-3 b-5 b+16 & =5 b-5 b+4 & & \text { ↔Decide which side you want your variable on } \\
-8 b+16 & =4 & &
\end{aligned}
$$

$-8 b+16-16=4-16$

$$
-8 b=-12
$$

$$
\frac{-8 b}{-8}=\frac{-10}{-8}
$$

$$
b=\frac{5}{4} \text { or } 1.25
$$

\leftarrow Move numbers to the side opposite your variable

Tip:
If the question doesn't specify, decimal
answers can be rounded to two decimal
points, or left as fractions in lowest terms

Checking your solution

Without solving this equation, determine whether the correct solution is $\mathbf{x}=\mathbf{- 2}$ or $\mathbf{X}=\mathbf{2}$
$2(4 x-5)+3+x=12-x+1$

Checking $x=-2$		Checking $\mathrm{x}=2$	
LS	RS	LS	RS
$2(4 x-5)+3+x=12-x+1$		$2(4 x-5)+3+x=12-x+1$	
$2[4(-2)-5]+3+(-2)$	12-(-2) + 1	$2[4(2)-5]+3+(2)$	12-(2) + 1
$2(-8-5)+3-2$	12+2+1	$2(8-5)+3+2$	12-2+1
$2(-13)+3-2$	15	$2(3)+3+2$	11
-26+3-2	15	$6+3+2$	11
-25	15	11	11
	RS \times		=RS
Therefore, the correct solution is $\mathrm{x}=2$			

Rearranging Formulas

Isolate the required variable using opposite operations, just like when solving equations.

Rearrange to isolate " t " $\text { n } E$	Rearrange to isolate " X " $y=3 x^{2}-5$
	$y+5=3 x^{2}-5+5$
$t(\boldsymbol{P})=\left(\frac{\boldsymbol{E}}{\boldsymbol{t}}\right) t$	$y+5=3 x^{2}$
$t P=E$	$\frac{y+5}{3}=\frac{3 x^{2}}{3}$
$\frac{t \boldsymbol{P}}{P}=\frac{E}{P}$	$\frac{y+5}{3}=x^{2}$
$t=\frac{E}{\boldsymbol{P}}$	$\sqrt{\frac{y+5}{3}}=\sqrt{x^{2}}$
	$\sqrt{\frac{y+5}{3}}=x$

Solving for an unknown with a fraction
Option A: Clear fractions one at a time

Short way	Long way
$\begin{aligned} \frac{3 x-2}{4}+7 & =\frac{-x+4}{5} \\ 4\left(\frac{3 x-2}{4}+7\right) & =\left(\frac{-x+4}{5}\right) 4 \\ 3 x-2+28 & =\frac{-4 x+16}{5} \\ 5(3 x+26) & =\left(\frac{-4 x+16}{5}\right) 5 \\ 15 x+130 & =-4 x+16 \\ 15 x+4 x & =16-130 \\ 19 x & =-114 \\ \frac{19 x}{19} & =\frac{-114}{19} \\ x & =\frac{-114}{19} \end{aligned}$	$\begin{aligned} & \frac{3 x-2}{4}+7=\frac{-x+4}{5} \\ & \frac{4}{1}\left(\frac{3 x-2}{4}+7\right)=\left(\frac{-x+4}{5}\right) \frac{4}{1} \\ & \frac{4(3 x-2)}{1(4)}+4(7)=\frac{4(-x+4)}{1(5)} \\ & \frac{3 x-2}{1}+28=\frac{-4 x+16}{5} \\ & 3 x-2+28=\frac{-4 x+16}{5} \\ & 5(3 x+26)=\left(\frac{-4 x+16}{5}\right) \frac{5}{1} \\ & 5(3 x+26)=\frac{5(-4 x+16)}{1(5)} \\ & 5(3 x+26)=\frac{-4 x+16}{1} \\ & 15 x+130=-4 x+16 \\ & 15 x+4 x=16-130 \\ & 19 x=-114 \\ & \frac{19 x}{19}=\frac{-114}{19} \\ & x=\frac{-114}{19} \\ & 19 \end{aligned}$

Option B: Clear all fractions at the same time (by finding the lowest common denominator)

Short way	Long way
$\begin{aligned} \frac{3 x-2}{4}+7 & =\frac{-x+4}{5} \\ 20\left(\frac{3 x-2}{4}+7\right) & =\left(\frac{-x+4}{5}\right) 20 \\ 5(3 x-2)+140 & =4(-x+4) \\ 15 x-10+140 & =-4 x+16 \\ 15 x+130 & =-4 x+16 \\ 15 x+4 x & =16-130 \\ 19 x & =-114 \\ \frac{19 x}{19} & =\frac{-114}{19} \\ x & =\frac{-114}{19} \end{aligned}$	$\begin{aligned} \frac{3 x-2}{4}+7 & =\frac{-x+4}{5} \\ \frac{20}{1}\left(\frac{3 x-2}{4}+7\right) & =\left(\frac{-x+4}{5}\right) \frac{20}{1} \\ \frac{20(3 x-2)}{1(4)}+140 & =\frac{20(-x+4)}{1(5)} \\ \frac{20(3 x-2)}{4}+140 & =\frac{20(-x+4)}{5} \\ 5(3 x-2)+140 & =4(-x+4) \\ 15 x-10+140 & =-4 x+16 \\ 15 x+130 & =-4 x+16 \\ 15 x+4 x & =16-130 \\ 19 x & =-114 \\ \frac{19 x}{19} & =\frac{-114}{19} \\ x & =\frac{-114}{19} \end{aligned}$

